LAE-GAN-Based Face Image Restoration for Low-Light Age Estimation

Author:

Nam Se HyunORCID,Kim Yu HwanORCID,Choi Jiho,Hong Seung Baek,Owais MuhammadORCID,Park Kang Ryoung

Abstract

Age estimation is applicable in various fields, and among them, research on age estimation using human facial images, which are the easiest to acquire, is being actively conducted. Since the emergence of deep learning, studies on age estimation using various types of convolutional neural networks (CNN) have been conducted, and they have resulted in good performances, as clear images with high illumination were typically used in these studies. However, human facial images are typically captured in low-light environments. Age information can be lost in facial images captured in low-illumination environments, where noise and blur generated by the camera in the captured image reduce the age estimation performance. No study has yet been conducted on age estimation using facial images captured under low light. In order to overcome this problem, this study proposes a new generative adversarial network for low-light age estimation (LAE-GAN), which compensates for the brightness of human facial images captured in low-light environments, and a CNN-based age estimation method in which compensated images are input. When the experiment was conducted using the MORPH, AFAD, and FG-NET databases—which are open databases—the proposed method exhibited more accurate age estimation performance and brightness compensation in low-light images compared to state-of-the-art methods.

Funder

National Research Foundation of Korea

Institute for Information & Communications Technology Planning & Evaluation

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3