Abstract
In recent years, learning-based approaches for 3D reconstruction have gained much popularity due to their encouraging results. However, unlike 2D images, 3D cannot be represented in its canonical form to make it computationally lean and memory-efficient. Moreover, the generation of a 3D model directly from a single 2D image is even more challenging due to the limited details available from the image for 3D reconstruction. Existing learning-based techniques still lack the desired resolution, efficiency, and smoothness of the 3D models required for many practical applications. In this paper, we propose voxel-based 3D object reconstruction (V3DOR) from a single 2D image for better accuracy, one using autoencoders (AE) and another using variational autoencoders (VAE). The encoder part of both models is used to learn suitable compressed latent representation from a single 2D image, and a decoder generates a corresponding 3D model. Our contribution is twofold. First, to the best of the authors’ knowledge, it is the first time that variational autoencoders (VAE) have been employed for the 3D reconstruction problem. Second, the proposed models extract a discriminative set of features and generate a smoother and high-resolution 3D model. To evaluate the efficacy of the proposed method, experiments have been conducted on a benchmark ShapeNet data set. The results confirm that the proposed method outperforms state-of-the-art methods.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Reference44 articles.
1. A Survey of Surface Reconstruction from Point Clouds
2. Surface Reconstruction Using Scattered Cloud Points;Goel;Int. J. Adv. Res. Comput. Sci. Softw. Eng.,2013
3. Shapenet: An information-rich 3d model repository;Chang;arXiv,2015
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献