Well Testing Methodology for Multiple Vertical Wells with Well Interference and Radially Composite Structure during Underground Gas Storage

Author:

Chu Hongyang,Ma Tianbi,Chen Zhen,Liu Wenchao,Gao Yubao

Abstract

To achieve the goal of decarbonized energy and greenhouse gas reduction, underground gas storage (UGS) has proven to be an important source for energy storage and regulation of natural gas supply. The special working conditions in UGS cause offset vertical wells to easily interfere with target vertical wells. The current well testing methodology assumes that there is only one well, and the interference from offset wells is ignored. This paper proposes a solution and analysis method for the interference from adjacent vertical wells to target vertical wells by analytical theory. The model solution is obtained by the solution with a constant rate and the Laplace transform method. The pressure superposition is used to deal with the interference from adjacent vertical wells. The model reliability in the gas injection and production stages is verified by commercial software. Pressure analysis shows that the heterogeneity and interference in the gas storage are caused by long-term gas injection and production. As both the adjacent well and the target well are in the gas production stage, the pressure derivative value in radial flow is related to production rate, mobility ratio, and 0.5. Gas injection from offset wells will cause the pressure derivative to drop later. Multiple vertical wells from the Hutubi UGS are used to illustrate the properties of vertical wells and the formation.

Funder

National Science Foundation, China

China Postdoctoral Science Foundations

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3