A Novel Performance Evaluation Method for Gas Reservoir-Type Underground Natural Gas Storage

Author:

Wanyan Qiqi12,Xu Hongcheng12,Song Lina12,Zhu Weiyao3,Pei Gen12,Fan Jiayi12,Zhao Kai12,Liu Junlan12,Gao Yubao3

Affiliation:

1. PetroChina Research Institute of Petroleum Exploration & Development, China National Petroleum Corporation, Beijing 100083, China

2. Key Laboratory of Oil and Gas Underground Storage Project of China National Petroleum Corporation, China National Petroleum Corporation, Beijing 100083, China

3. School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, China

Abstract

The regulation of the seasonal energy supply for natural gas and the storage of fossil energy are important to society. To achieve it, storing a large amount of natural gas in porous underground media is one of the government’s choices. Due to the successful lesson learned from the oil and gas industry, natural gas storage in underground porous media has been regarded as the most potential long−term energy storage method. In this paper, we developed a new workflow to evaluate the performance of gas reservoir−type underground natural gas storage (UGS). The theoretical background of this workflow includes the correction of the average formation pressure (AFP) and gas deviation factor by error theory and the analytical mathematical model of UGS wells. The Laplace transform, line source function, and Stehfest numerical inversion methods were used to obtain pressure solutions for typical vertical and horizontal wells in UGS. The pressure superposition principle and weighting method of the gas injection−withdrawal rate were used to obtain the AFP. Through the correction of the AFP and gas deviation factor in the material balance equation, the parameters for inventory, effective inventory (the movable gas volume at standard condition), working gas volume (the movable gas volume is operated from the upper limit pressure to the lower limit pressure), and effective gas storage volume (the available gas storage volume at reservoir condition) were determined. Numerical data from the numerical simulator was used to verify the proposed model pressure solution. Actual data from China’s largest Hutubi UGS was used to illustrate the reliability of the proposed workflow in UGS performance evaluation. The results show that large−scale gas injection and withdrawal rates lead to composite heterogeneity in gas storage wells. The nine injection and production cycles’ pressure and effective inventory changes from Hutubi UGS can be divided into a period of rapid pressure rise and a period of slow pressure increase. The final AFP is 32.8 MPa. The final inventory of the Hutubi UGS is 100.1 × 108 m3, with a capacity filling rate (the ratio of effective inventory to designed gas storage capacity) of 93.6%. The effective inventory is 95.3 × 108 m3, and the inventory utilization ratio (the ratio of effective inventory to inventory) is 95.2%. The working gas volume is 40.3 × 108 m3. This study provides a new method for inventory evaluation of the gas reservoir−type UGS.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference67 articles.

1. Qafleshi, M., Kryeziu, D.R., and Qafleshi, D. (2022, November 28). A Review on the Kosovo’s Challenge on Green Energy Generation and Paris Climate Agreement. Available online: https://knowledgecenter.ubt-uni.net/conference/2021UBTIC/all-events/8.

2. Briefing: The 2021 Glasgow Climate Pact: Steps on the transition pathway towards a low carbon world;Cohen;Proc. Inst. Civ. Eng.-Energy,2022

3. How to achieve the first step of the carbon-neutrality 2060 target in China: The coal substitution perspective;Jia;Energy,2021

4. Carbon peak and carbon neutrality in China: Goals, implementation path and prospects;Wang;China Geol.,2021

5. China can reach carbon neutrality before 2050 by improving economic development quality;Xu;Energy,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3