Detection Technique Tailored for Small Targets on Water Surfaces in Unmanned Vessel Scenarios

Author:

Zhang Jian1,Huang Wenbin23,Zhuang Jiayuan1,Zhang Renran1,Du Xiang1

Affiliation:

1. Science and Technology on Underwater Vehicle Laboratory, Harbin Engineering University, Harbin 150001, China

2. School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China

3. Marine Design & Research Institute of China, Shanghai 200011, China

Abstract

Lightweight detection methods are frequently utilized for unmanned system sensing; however, to tackle the challenge of low precision in detecting small targets on the water’s surface by unmanned surface vessels, we present an enhanced method for ship target detection tailored specifically to this context. Building upon the mainstream single-stage Yolov8 object detection model, our approach involves the integration of the Reparameterized Convolutional Spatial Oversampling Attention (RCSOSA) module, replacing the traditional Classic 2D Convolutional (C2f) module to bolster the network’s feature extraction capabilities. Additionally, we introduce a downsampling module, Spatial to Depth Convolution (SPDConv), to amplify the extraction of features relevant to small targets, thereby enhancing detection accuracy. Finally, the Focal Modulation module, based on focal modulation, replaces the SPPF (Spatial Pyramid Pooling with FPN) module, leading to a reduction in channel count, parameter volume, and an augmentation of the network’s feature representation. Experimental results demonstrate that the proposed model achieves a 3.6% increase in mAP@0.5 and a 2.1% improvement in mAP@0.5:0.95 compared to the original Yolov8 model, while maintaining real-time processing capabilities. The research validates the higher accuracy and stronger generalization capabilities of the proposed improved ship target detection method in various complex water surface environments.

Funder

Heilongjiang Provincial Excellent Youth Fund

The National Key Research and Development Program of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3