Machine Learning in the Analysis of Multispectral Reads in Maize Canopies Responding to Increased Temperatures and Water Deficit

Author:

Spišić Josip,Šimić DomagojORCID,Balen JosipORCID,Jambrović Antun,Galić VlatkoORCID

Abstract

Real-time monitoring of crop responses to environmental deviations represents a new avenue for applications of remote and proximal sensing. Combining the high-throughput devices with novel machine learning (ML) approaches shows promise in the monitoring of agricultural production. The 3 × 2 multispectral arrays with responses at 610 and 680 nm (red), 730 and 760 nm (red-edge) and 810 and 860 nm (infrared) spectra were used to assess the occurrence of leaf rolling (LR) in 545 experimental maize plots measured four times for calibration dataset (n = 2180) and 145 plots measured once for external validation. Multispectral reads were used to calculate 15 simple normalized vegetation indices. Four ML algorithms were assessed: single and multilayer perceptron (SLP and MLP), convolutional neural network (CNN) and support vector machines (SVM) in three validation procedures, which were stratified cross-validation, random subset validation and validation with external dataset. Leaf rolling occurrence caused visible changes in spectral responses and calculated vegetation indexes. All algorithms showed good performance metrics in stratified cross-validation (accuracy >80%). SLP was the least efficient in predictions with external datasets, while MLP, CNN and SVM showed comparable performance. Combining ML with multispectral sensing shows promise in transition towards agriculture based on data-driven decisions especially considering the novel Internet of Things (IoT) avenues.

Funder

European Union

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3