StressNet: a spatial-spectral-temporal deformable attention-based framework for water stress classification in maize

Author:

Nampally Tejasri,Kumar Kshitiz,Chatterjee Soumyajit,Pachamuthu Rajalakshmi,Naik Balaji,Desai Uday B.

Abstract

In recent years, monitoring the health of crops has been greatly aided by deploying highthroughput crop monitoring techniques that integrate remotely captured imagery and deep learning techniques. Most methods rely mainly on the visible spectrum for analyzing the abiotic stress, such as water deficiency in crops. In this study, we carry out experiments on maize crop in a controlled environment of different water treatments. We make use of a multispectral camera mounted on an Unmanned Aerial Vehicle for collecting the data from the tillering stage to the heading stage of the crop. A pre-processing pipeline, followed by the extraction of the Region of Interest from orthomosaic is explained. We propose a model based on a Convolution Neural Network, added with a deformable convolutional layer in order to learn and extract rich spatial and spectral features. These features are further fed to a weighted Attention-based Bi-Directional Long Short-Term Memory network to process the sequential dependency between temporal features. Finally, the water stress category is predicted using the aggregated Spatial-Spectral-Temporal Characteristics. The addition of multispectral, multi-temporal imagery significantly improved accuracy when compared with mono-temporal classification. By incorporating a deformable convolutional layer and Bi-Directional Long Short-Term Memory network with weighted attention, our proposed model achieved best accuracy of 91.30% with a precision of 0.8888 and a recall of 0.8857. The results indicate that multispectral, multi-temporal imagery is a valuable tool for extracting and aggregating discriminative spatial-spectral-temporal characteristics for water stress classification.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3