Influence of ZrO2 Nanoparticle Addition on the Optical Properties of Denture Base Materials Fabricated Using Additive Technologies

Author:

Khattar Abdulrahman,Alsaif Majed H.,Alghafli Jawad A.,Alshaikh Ali A.,Alsalem Ali M.,Almindil Ibrahim A.,Alsalman Abdulsalam M.,Alboori Ali J.,Al-Ajwad Abdullah M.,Almuhanna Hussain M,Khan Soban Q.,AlRumaih Hamad S.ORCID,Gad Mohammed M.ORCID

Abstract

This study investigated the translucency of 3D-printed denture base resins modified with zirconium dioxide nanoparticles (ZrO2NPs) under thermal cycling. A total of 110 specimens were fabricated and divided into 3 groups according to the materials, i.e., heat-polymerized resin, and 3D-printed resins (NextDent, and ASIGA). The 3D-printed resins were modified with 0, 0.5, 1, 3, and 5 wt.% of ZrO2NPs. All the specimens were subjected to 5000 thermal cycles. The translucency was measured using a spectrophotometer. The results showed that the heat-polymerized resin had considerably higher translucency than the 3D-printed resins. Compared to the unmodified group, the translucency decreased significantly after adding 5% ZrO2NPs to NextDent and 3% ZrO2NPs to ASIGA resins. The highest translucency was achieved for NextDent by adding 0.5% ZrO2NPs and for ASIGA without any ZrO2NPs. It was found that the average concentration level in ASIGA was significantly higher than that in NextDent. These findings revealed that 3D-printed resins have lower translucency than heat-polymerized acrylic resin, and adding ZrO2NPs at low concentrations did not affect the translucency of the 3D-printed resins. Therefore, in terms of translucency, 3D-printed nanocomposite denture base resins could be considered for clinical applications when ZrO2NPs are added at low concentrations.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3