Coupling Virtual Reality Simulator with Instantaneous Emission Model: A New Method for Estimating Road Traffic Emissions

Author:

De Blasiis Maria RosariaORCID,Ferrante ChiaraORCID,Palmieri FulvioORCID,Veraldi Valerio

Abstract

The article presents a new methodology for traffic emissions modeling by coupled the use of dynamic emissions models with a virtual reality driving simulator. The former allows the drivers’ behavior to be studied through a virtual reality driving test, focusing the attention on how traffic flow conditions combined with road geometrical characteristics influence the driving behavior. The latter is used to model the instantaneous vehicle emissions, starting from the driving data provided by the driving simulator. The article analyzes the relationship among three factors: the driving behavior, the pollutant emissions, and the traffic flow condition. The results highlight the influence of the drivers’ behavior on fuel consumption and emissions factors. Under high traffic flow, despite the reduction of the average vehicle speed, the average emissions level increases due to the increased vehicle accelerations and decelerations, which influence the behavior of the engine and the aftertreatment system. The proposed approach points out the relationship between vehicle emissions and drivers’ behavior. Since the coupling among instantaneous emissions modeling and geometry-functionality conditions of the road reveals important elements that traditional approaches miss, the proposed method provides a new way to increase the efficiency of road design and management, from the environmental point of view.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3