Conceptions of Learning Science among Elementary School Students in AR Learning Environment: A Case Study of “The Magic Sound”

Author:

Cai SuORCID,Jiao Xinyue,Li Jiangxu,Jin Peng,Zhou Haitao,Wang Tao

Abstract

Augmented reality (AR) demonstrates great promise in science education. However, students’ conceptions of learning when they learn science using AR are currently unclear. This study aimed to analyze learners’ views and scientific epistemic beliefs on learning science. Eighty-two elementary school students in grades 4–6 participated in a two-week course on the introduction to sound. The intervention adopted inquiry-based learning utilizing three AR software programs that integrated multisensory channels. The data were collected through Cheng’s Conceptions of Learning Science by AR (CLSAR) questionnaire and Learners’ Scientific Epistemic Beliefs (SEB) questionnaire. The results show that students in this study generally had positive conceptions of learning science and a high level of scientific epistemic beliefs. Moreover, gender differences existed in the relationship between CLASR and SEB. This study contributed to the currently unresolved discussion of the impact of demographic differences on students’ learning, indicating that AR can be used to enhance senior students’ learning of science in elementary schools.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3