Target Points Tracking Control for Autonomous Cleaning Vehicle Based on the LSTM Network

Author:

Wang Hua,Chen Xi,Miao Zhonghua

Abstract

In order to efficiently and exactly in tracking the desired path points, autonomous cleaning vehicles have to adapt their own behavior according to the perceived environmental information. This paper proposes a target points tracking control algorithm based on the Long Short-Term Memory network, which can generate the speed and yaw rate to arrive at the target point in real time. The target point is obtained by a parameter named foresight distance that is deduced based on the fuzzy control, whose inputs are the speed and yaw rate of the vehicle at the current point. The effectiveness of the proposed algorithm is illustrated by the simulation and field experiments. Compared with other classical algorithms, this algorithm can track the point sequence on straight path and multiple curvature path more accurately. The field experiment indicates the proposed controller is efficient in following the pre-defined path points, furthermore, it can make the autonomous cleaning vehicle run smoothly in the path which is disturbed by bounded disturbances. The distance errors can meet the actual requirement of the cleaning vehicle during the tracking process.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3