Abstract
Kelvin-Helmholtz (K-H) instability plays a significant role in mixing. To investigate the existence of K-H instability along the North Passage of the Yangtze River Estuary, the non-hydrostatic model NHWAVE is utilized to simulate the fresh-salt water mixing process along the North Passage of the Yangtze River Estuary. Using high horizontal resolution, the structure of K-H billows have been successfully captured within the Lower Reach of the North Passage. The K-H instability occurs between the max flood and high-water slack. The duration and length scale of the K-H billows highly depends on the local interaction between fresh-water discharge and tide. The horizontal length scale of the instability is about 60 m, similar to the observations in other estuaries. In the vertical direction, the K-H billows exist within the pycnocline with length scale ranging from 6 to 7 m. The timescale of the billows is approximate 6 min. By analyzing the changes of potential energy during the mixing process, results show that the existence of K-H instability induces intense vertical mixing, which can greatly increase mixing efficiency in the North Passage of the Yangtze River Estuary.
Funder
National Natural Science Foundation of China
National Science Foundation for Distinguished Young Scholars
Natural Science Foundation of Jiangsu Province
Subject
Ocean Engineering,Water Science and Technology,Civil and Structural Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献