Abstract
The advancement of deep learning (DL) technology and Unmanned Aerial Vehicles (UAV) remote sensing has made it feasible to monitor coastal wetlands efficiently and precisely. However, studies have rarely compared the performance of DL with traditional machine learning (Pixel-Based (PB) and Object-Based Image Analysis (OBIA) methods) in UAV-based coastal wetland monitoring. We constructed a dataset based on RGB-based UAV data and compared the performance of PB, OBIA, and DL methods in the classification of vegetation communities in coastal wetlands. In addition, to our knowledge, the OBIA method was used for the UAV data for the first time in this paper based on Google Earth Engine (GEE), and the ability of GEE to process UAV data was confirmed. The results showed that in comparison with the PB and OBIA methods, the DL method achieved the most promising classification results, which was capable of reflecting the realistic distribution of the vegetation. Furthermore, the paradigm shifts from PB and OBIA to the DL method in terms of feature engineering, training methods, and reference data explained the considerable results achieved by the DL method. The results suggested that a combination of UAV, DL, and cloud computing platforms can facilitate long-term, accurate monitoring of coastal wetland vegetation at the local scale.
Funder
National Key Research and Development Project of China
Subject
Nature and Landscape Conservation,Ecology,Global and Planetary Change
Reference76 articles.
1. Wetland Resources: Status, Trends, Ecosystem Services, and Restorability;Annu. Rev. Environ. Resour.,2005
2. The Value of Estuarine and Coastal Ecosystem Services;Ecol. Monogr.,2011
3. Wetlands, Carbon, and Climate Change;Landsc. Ecol.,2013
4. Impacts of Biodiversity Loss on Ocean Ecosystem Services;Science,2006
5. A Global Map of Human Impact on Marine Ecosystems;Science,2008
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献