Coastal Wetland Vegetation Classification Using Pixel-Based, Object-Based and Deep Learning Methods Based on RGB-UAV

Author:

Zheng Jun-YiORCID,Hao Ying-Ying,Wang Yuan-Chen,Zhou Si-Qi,Wu Wan-Ben,Yuan Qi,Gao Yu,Guo Hai-Qiang,Cai Xing-Xing,Zhao BinORCID

Abstract

The advancement of deep learning (DL) technology and Unmanned Aerial Vehicles (UAV) remote sensing has made it feasible to monitor coastal wetlands efficiently and precisely. However, studies have rarely compared the performance of DL with traditional machine learning (Pixel-Based (PB) and Object-Based Image Analysis (OBIA) methods) in UAV-based coastal wetland monitoring. We constructed a dataset based on RGB-based UAV data and compared the performance of PB, OBIA, and DL methods in the classification of vegetation communities in coastal wetlands. In addition, to our knowledge, the OBIA method was used for the UAV data for the first time in this paper based on Google Earth Engine (GEE), and the ability of GEE to process UAV data was confirmed. The results showed that in comparison with the PB and OBIA methods, the DL method achieved the most promising classification results, which was capable of reflecting the realistic distribution of the vegetation. Furthermore, the paradigm shifts from PB and OBIA to the DL method in terms of feature engineering, training methods, and reference data explained the considerable results achieved by the DL method. The results suggested that a combination of UAV, DL, and cloud computing platforms can facilitate long-term, accurate monitoring of coastal wetland vegetation at the local scale.

Funder

National Key Research and Development Project of China

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3