Performance and Energy Trade-Offs for Parallel Applications on Heterogeneous Multi-Processing Systems

Author:

Coutinho Demetrios A. M.ORCID,De Sensi DanieleORCID,Lorenzon Arthur Francisco,Georgiou KyriakosORCID,Nunez-Yanez Jose,Eder KerstinORCID,Xavier-de-Souza SamuelORCID

Abstract

This work proposes a methodology to find performance and energy trade-offs for parallel applications running on Heterogeneous Multi-Processing systems with a single instruction-set architecture. These offer flexibility in the form of different core types and voltage and frequency pairings, defining a vast design space to explore. Therefore, for a given application, choosing a configuration that optimizes the performance and energy consumption is not straightforward. Our method proposes novel analytical models for performance and power consumption whose parameters can be fitted using only a few strategically sampled offline measurements. These models are then used to estimate an application’s performance and energy consumption for the whole configuration space. In turn, these offline predictions define the choice of estimated Pareto-optimal configurations of the model, which are used to inform the selection of the configuration that the application should be executed on. The methodology was validated on an ODROID-XU3 board for eight programs from the PARSEC Benchmark, Phoronix Test Suite and Rodinia applications. The generated Pareto-optimal configuration space represented a 99% reduction of the universe of all available configurations. Energy savings of up to 59.77%, 61.38% and 17.7% were observed when compared to the performance, ondemand and powersave Linux governors, respectively, with higher or similar performance.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SWEEP: Adaptive Task Scheduling for Exploring Energy Performance Trade-offs;2024 IEEE International Parallel and Distributed Processing Symposium (IPDPS);2024-05-27

2. Mini-batching with Fused Training and Testing for Data Streams Processing on the Edge;Proceedings of the 21st ACM International Conference on Computing Frontiers;2024-05-07

3. Energy efficient power cap configurations through Pareto front analysis and machine learning categorization;Cluster Computing;2023-10-10

4. JOSS: Joint Exploration of CPU-Memory DVFS and Task Scheduling for Energy Efficiency;Proceedings of the 52nd International Conference on Parallel Processing;2023-08-07

5. An Automated Design Flow for Adaptive Neural Network Hardware Accelerators;Journal of Signal Processing Systems;2023-04-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3