Energy efficient power cap configurations through Pareto front analysis and machine learning categorization

Author:

Cabrera Alberto,Almeida Francisco,Castellanos-Nieves Dagoberto,Oleksiak Ariel,Blanco Vicente

Abstract

AbstractThe growing demand for more computing resources has increased the overall energy consumption of computer systems. To support this increasing demand, power and energy consumption must be considered as a constraint on software execution. Modern architectures provide tools for managing the power constraints of a system directly. The Intel Power Cap is a relatively new tool developed to give users fine-grained control over power usage at the central processing unit (CPU) level. The complexity of these tools, in addition to the high variety of modern heterogeneous architectures, hinders predictions of the energy consumption and the performance of any target software. The application of power capping technologies usually leads to the bi-objective optimization problem for energy efficiency and execution time but optimal power constraints could also produce exceeding performance losses. Thus, methods and tools are needed to calculate the proper parameters for power capping technologies, and to optimize energy efficiency. We propose a methodology to analyze the performance and the energy efficiency trade-offs using this power cap technology for a given application. A Pareto front is extracted for the multi-objective performance and energy problem, which represents multiple feasible configurations for both objectives. An extensive experimentation is carried out to categorize the different applications to determine the overall optimal power cap configurations. We propose the use of machine learning (ML) clustering techniques to categorize each application in the target architecture. The use of ML allows us to automate the process and simplifies the effort required to solve the optimization problem. A practical case is presented where we categorize the applications using ML techniques, with the possibility of adding a new application into an existing categorization.

Funder

Ministerio de Ciencia e Innovación

Agencia Estatal de Investigación

Universidad de la Laguna

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Software

Reference53 articles.

1. Jones, N.: How to stop data centres from gobbling up the world’s electricity. Nature 561(7722), 163–167 (2018)

2. Andrae, A.S., Edler, T.: On global electricity usage of communication technology: trends to 2030. Challenges 6(1), 117–157 (2015)

3. Cabrera, A., Almeida, F., Blanco, V., Castellanos-Nieves, D.: Finding energy efficient hardware configurations under a power cap. In: Avances en Arquitectura Y Tecnología de Computadores: Actas de Jornadas SARTECO, Cáceres, 18 a 20 de Septiembre de 2019, pp. 253–258 (2019). Servicio de Publicaciones

4. Fox, G.C., Glazier, J.A., Kadupitiya, J.C.S., Jadhao, V., Kim, M., Qiu, J., Sluka, J.P., Somogyi, E.T., Marathe, M., Adiga, A., Chen, J., Beckstein, O., Jha, S.: Learning everywhere: Pervasive machine learning for effective high-performance computation. CoRR arxiv:abs/1902.10810 (2019)

5. Lison, P.: An introduction to machine learning. Lang. Technol. Group (LTG) 35, 1 (2015)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3