Abstract
Multiple multi-threaded tasks constitute a modern many-core application. An accompanying generic Directed Acyclic Graph (DAG) represents the execution precedence relationship between the tasks. The application comes with a hard deadline and high peak power consumption. Parallel execution of multiple tasks on multiple cores results in a quicker execution, but higher peak power. Peak power single-handedly determines the involved cooling costs in many-cores, while its violations could induce performance-crippling execution uncertainties. Less task parallelization, on the other hand, results in lower peak power, but a more prolonged deadline violating execution. The problem of peak power minimization in many-cores is to determine task-to-core mapping configuration in the spatio-temporal domain that minimizes the peak power consumption of an application, but ensures application still meets the deadline. All previous works on peak power minimization for many-core applications (with or without DAG) assume only single-threaded tasks. We are the first to propose a framework, called PkMin, which minimizes the peak power of many-core applications with DAG that have multi-threaded tasks. PkMin leverages the inherent convexity in the execution characteristics of multi-threaded tasks to find a configuration that satisfies the deadline, as well as minimizes peak power. Evaluation on hundreds of applications shows PkMin on average results in 49.2% lower peak power than a similar state-of-the-art framework.
Subject
Electrical and Electronic Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Lifetime Estimation for Core-Failure Resilient Multi-Core Processors;2023 IEEE 16th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC);2023-12-18
2. SmartBoost: Lightweight ML-Driven Boosting for Thermally-Constrained Many-Core Processors;2021 58th ACM/IEEE Design Automation Conference (DAC);2021-12-05