Energy-Efficient Architecture for CNNs Inference on Heterogeneous FPGA

Author:

Spagnolo Fanny,Perri StefaniaORCID,Frustaci Fabio,Corsonello PasqualeORCID

Abstract

Due to the huge requirements in terms of both computational and memory capabilities, implementing energy-efficient and high-performance Convolutional Neural Networks (CNNs) by exploiting embedded systems still represents a major challenge for hardware designers. This paper presents the complete design of a heterogeneous embedded system realized by using a Field-Programmable Gate Array Systems-on-Chip (SoC) and suitable to accelerate the inference of Convolutional Neural Networks in power-constrained environments, such as those related to IoT applications. The proposed architecture is validated through its exploitation in large-scale CNNs on low-cost devices. The prototype realized on a Zynq XC7Z045 device achieves a power efficiency up to 135 Gops/W. When the VGG-16 model is inferred, a frame rate up to 11.8 fps is reached.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. PyTorch and CEDR: Enabling Deployment of Machine Learning Models on Heterogeneous Computing Systems;2023 20th ACS/IEEE International Conference on Computer Systems and Applications (AICCSA);2023-12-04

2. DNN Acceleration: A High-Accuracy Implementation for Base-2 Softmax Layer;2023 International Mobile, Intelligent, and Ubiquitous Computing Conference (MIUCC);2023-09-27

3. F-LSTM: FPGA-Based Heterogeneous Computing Framework for Deploying LSTM-Based Algorithms;Electronics;2023-02-26

4. Base-2 Softmax Function: Suitability for Training and Efficient Hardware Implementation;IEEE Transactions on Circuits and Systems I: Regular Papers;2022-09

5. Concretely efficient secure multi-party computation protocols: survey and more;Security and Safety;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3