Concretely efficient secure multi-party computation protocols: survey and more

Author:

Feng DengguoORCID,Yang KangORCID

Abstract

Secure multi-party computation (MPC) allows a set of parties to jointly compute a function on their private inputs, and reveals nothing but the output of the function. In the last decade, MPC has rapidly moved from a purely theoretical study to an object of practical interest, with a growing interest in practical applications such as privacy-preserving machine learning (PPML). In this paper, we comprehensively survey existing work on concretely efficient MPC protocols with both semi-honest and malicious security, in both dishonest-majority and honest-majority settings. We focus on considering the notion of security with abort, meaning that corrupted parties could prevent honest parties from receiving output after they receive output. We present high-level ideas of the basic and key approaches for designing different styles of MPC protocols and the crucial building blocks of MPC. For MPC applications, we compare the known PPML protocols built on MPC, and describe the efficiency of private inference and training for the state-of-the-art PPML protocols. Furthermore, we summarize several challenges and open problems to break though the efficiency of MPC protocols as well as some interesting future work that is worth being addressed. This survey aims to provide the recent development and key approaches of MPC to researchers, who are interested in knowing, improving, and applying concretely efficient MPC protocols.

Publisher

EDP Sciences

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Two‐Server Oblivious Transfer for Quantum Messages;Advanced Quantum Technologies;2024-02-08

2. Secure Multi-Party Computation for Machine Learning: A Survey;IEEE Access;2024

3. A multi-party logistic regression using the Adam method;2023 4th International Conference on Computer, Big Data and Artificial Intelligence (ICCBD+AI);2023-12-15

4. Multi-key homomorphic encryption with tightened RGSW ciphertexts without relinearization for ciphertexts product;Journal of King Saud University - Computer and Information Sciences;2023-12

5. Post‐quantum secure two‐party computing protocols against malicious adversaries;Concurrency and Computation: Practice and Experience;2023-10-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3