Synthesis of 2-DOF Decoupled Rotation Stage with FEA-Based Neural Network

Author:

Ye TingtingORCID,Li YangminORCID

Abstract

Transfer printing technology has developed rapidly in the last decades, offering a potential demand for 2-DOF rotation stages. In order to remove decoupling modeling, improve motion accuracy, and simplify the control method, the 2-DOF decoupled rotation stages based on compliant mechanisms present notable merits. Therefore, a novel 2-DOF decoupled rotation stage is synthesized of which the critical components of decoupling are the topological arrangement and a novel decoupled compound joint. To fully consider the undesired deformation of rigid segments, an FEA-based neural network model is utilized to predict the rotation strokes and corresponding coupling ratios, and optimize the structural parameters. Then, FEA simulations are conducted to investigate the static and dynamic performances of the proposed 2-DOF decoupled rotation stage. The results show larger rotation strokes of 4.302 mrad in one-axis actuation with a 1.697% coupling ratio, and 4.184 and 4.151 mrad in two-axis actuation with undesired Rz rotation of 0.014 mrad with fewer actuators than other works. In addition, the first natural frequency of 2151 Hz is also higher, enabling a wider working frequency range.

Funder

The ISE DGRF of The Hong Kong Polytechnic University

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3