Combining Deep Neural Network with Genetic Algorithm for Axial Flow Fan Design and Development

Author:

Liu Yu-Ling,Nisa Elsa ChaerunORCID,Kuan Yean-DerORCID,Luo Win-JetORCID,Feng Chien-Chung

Abstract

Axial flow fans are commonly used for a system or machinery cooling process. It also used for ventilating warehouses, factories, and garages. In the fan manufacturing industry, the demand for varying fan operating points makes design parameters complicated because many design parameters affect the fan performance. This study combines the deep neural network (DNN) with a genetic algorithm (GA) for axial flow design and development. The characteristic fan curve (P-Q Curve) can be generated when the relevant fan parameters are imported into this system. The system parameters can be adjusted to achieve the required characteristic curve. After the wind tunnel test is performed for verification, the data are integrated and corrected to reduce manufacturing costs and design time. This study discusses a small axial flow fan NACA and analyzes fan features, such as the blade root chord length, blade tip chord length, pitch angle, twist angle, fan diameter, and blade number. Afterwards, the wind tunnel performance test was performed and the fan performance curve obtained. The feature and performance test data were discussed using deep learning. The Python programming language was used for programming and the data were trained repeatedly. The greater the number of parameter data, the more accurate the prediction. Whether the performance condition is met could be learnt from the training result. All parameters were calculated using a genetic algorithm. The optimized fan features and performance were screened out to implement the intelligent fan design. This method can solve many fan suppliers’ fan design problems.

Funder

Long-sheng Instrument Co., Ltd., Taiwan

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3