The multi-objective optimisation design of outlet guide vanes of diagonal flow fan based on sobol sensitivity analysis

Author:

Mao Zijian12ORCID,Luo Yu12,Zhou Shuiqing12,Jin Weiya12,Feng Weiping3

Affiliation:

1. College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, China

2. Institue of Innovation Research of Shengzhou and Zhejiang University of Technology, Shengzhou, China

3. Zhejiang Fangyuan Test Group Co., LTD, Electrical Products Testing Laboratory, Hangzhou, China

Abstract

Diagonal flow fans offer substantial energy-saving potential and find broad application across various sectors. Their performance relies heavily on factors like outlet guide vanes and spacing relative to moving blades. However, research into enhancing fan performance through optimized guide vanes and spacing remains limited. In this study, we focus on improving the accuracy of predicting the internal flow field of diagonal flow fans. This paper incorporate rotation and curvature effects using the Large Eddy Simulation (LES) model and introduce stress terms with helicity constraints to create a non-linear subgrid-scale model. This refined model enables more precise numerical simulations. By employing accurate simulations, we optimize the outlet guide vane configuration and conduct sensitivity analysis. We utilize a Radial Basis Function (RBF) model coupled with the Sobol method for this purpose. The optimized guide vane design exhibits enhanced resistance to airflow separation compared to the original, resulting in notable reductions in flow losses within the grille channel. Experimental tests are performed on the diagonal flow fan both before and after optimization. At the specified operating point, the second guide vane optimization leads to a 1.28 m3/min increase in fan flow, a 4.33% rise in total pressure efficiency, and a 2.2 dB noise reduction. These findings underscore the accuracy of the helicity correction model in predicting diagonal flow fan behavior. The multi-objective optimization approach, combining the RBF proxy model with the Sobol method, proves highly reliable. It offers valuable design insights for similar fans and establishes a credible design methodology.

Funder

Natural Science Foundation of Zhejiang Province

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3