Automatic PCB Sample Generation and Defect Detection Based on ControlNet and Swin Transformer

Author:

Liu Yulong1ORCID,Wu Hao1ORCID,Xu Youzhi1,Liu Xiaoming1,Yu Xiujuan1

Affiliation:

1. School of Mechanical Engineering, Anhui University of Technology, Maanshan 243032, China

Abstract

In order to improve the efficiency and accuracy of multitarget detection of soldering defects on surface-mounted components in Printed Circuit Board (PCB) fabrication, we propose a sample generation method using Stable Diffusion Model and ControlNet, as well as a defect detection method based on the Swin Transformer. The method consists of two stages: First, high-definition original images collected in industrial production and the corresponding prompts are input to Stable Diffusion Model and ControlNet for automatic generation of nonindependent samples. Subsequently, we integrate Swin Transformer as the backbone into the Cascade Mask R-CNN to improve the quality of defect features extracted from the samples for accurate detection box localization and segmentation. Instead of segmenting individual components on the PCB, the method inspects all components in the field of view simultaneously over a larger area. The experimental results demonstrate the effectiveness of our method in scaling up nonindependent sample datasets, thereby enabling the generation of high-quality datasets. The method accurately recognizes targets and detects defect types when performing multitarget inspection on printed circuit boards. The analysis against other models shows that our improved defect detection and segmentation method improves the Average Recall (AR) by 2.8% and the mean Average Precision (mAP) by 1.9%.

Funder

Anhui Provincial Natural Science Foundation

Natural Science Research Project of Universities in Anhui Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3