A New Study of the Lower Levels of the Los Frailes Caldera (Spain) for the Location and Characterisation of Pozzolans as Construction Materials

Author:

Martín Domingo A.ORCID,Costafreda Jorge L.ORCID,Presa LeticiaORCID,Zambrano José,Costafreda Jorge L.

Abstract

Over the last two decades, there was been intensive study of pozzolans on the surface of the Los Frailes Caldera (Spain) for possible use as construction materials; however, research into the deepest underlying horizons has not yet been done. The main object of this paper is to present the results of the research carried out at different levels of depth, down to 30 m, to locate and demonstrate the presence of pozzolans in the depths of the Los Frailes Caldera. To achieve this, a series of analyses were carried out to classify the samples extracted from the various levels of depth, starting at the surface and continuing down to 30 m, which consisted of XRD, XRF, and SEM. Other technological tests were also performed such as chemical analysis of pozzolanic quality (CAQP) and pozzolanicity (PT) tests, at 8 and 15 days. Lastly, a geophysical study using electrical resistivity tomography (ERT) was developed to define the thickness and physical properties of the horizons of pozzolanic materials at depth, as well as to establish the depth of the deposit. The results obtained by XRD, XRF, and SEM confirmed the presence of pozzolans consisting of strongly zeolitized and bentonitised tuffs (ZBVT) in the lower levels of the Los Frailes Caldera, indicating that these horizons continue uninterruptedly beyond 30 m deep. The results of the CAQP and PT established that the ZBVTs that lie in the depths have pozzolanic qualities. On the other hand, the ERT study showed that ZBVT levels continue into the depths, thus proving that the lower limit of the deposit is even deeper. The results obtained in this work could have a positive impact on an increase in the reserves of pozzolanic raw materials in the researched area and could be used in the manufacture of light aggregates for mortars, concretes, and pozzolanic cements, consistent with the environment and effective in reducing CO2 emissions during the production process.

Publisher

MDPI AG

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3