Explaining Exploration–Exploitation in Humans

Author:

Candelieri AntonioORCID,Ponti Andrea,Archetti Francesco

Abstract

Human as well as algorithmic searches are performed to balance exploration and exploitation. The search task in this paper is the global optimization of a 2D multimodal function, unknown to the searcher. Thus, the task presents the following features: (i) uncertainty (i.e., information about the function can be acquired only through function observations), (ii) sequentiality (i.e., the choice of the next point to observe depends on the previous ones), and (iii) limited budget (i.e., a maximum number of sequential choices allowed to the players). The data about human behavior are gathered through a gaming app whose screen represents all the possible locations the player can click on. The associated value of the unknown function is shown to the player. Experimental data are gathered from 39 subjects playing 10 different tasks each. Decisions are analyzed in a Pareto optimality setting—improvement vs. uncertainty. The experimental results show that the most significant deviations from the Pareto rationality are associated with a behavior named “exasperated exploration”, close to random search. This behavior shows a statistically significant association with stressful situations occurring when, according to their current belief, the human feels there are no chances to improve over the best value observed so far, while the remaining budget is running out. To classify between Pareto and Not-Pareto decisions, an explainable/interpretable Machine Learning model based on Decision Tree learning is developed. The resulting model is used to implement a synthetic human searcher/optimizer successively compared against Bayesian Optimization. On half of the test problems, the synthetic human results as more effective and efficient.

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Information Systems,Management Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bayesian optimization over the probability simplex;Annals of Mathematics and Artificial Intelligence;2023-07-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3