Modelling human active search in optimizing black-box functions

Author:

Candelieri AntonioORCID,Perego RiccardoORCID,Giordani IlariaORCID,Ponti Andrea,Archetti FrancescoORCID

Abstract

AbstractModelling human function learning has been the subject of intense research in cognitive sciences. The topic is relevant in black-box optimization where information about the objective and/or constraints is not available and must be learned through function evaluations. In this paper, we focus on the relation between the behaviour of humans searching for the maximum and the probabilistic model used in Bayesian optimization. As surrogate models of the unknown function, both Gaussian processes and random forest have been considered: the Bayesian learning paradigm is central in the development of active learning approaches balancing exploration/exploitation in uncertain conditions towards effective generalization in large decision spaces. In this paper, we analyse experimentally how Bayesian optimization compares to humans searching for the maximum of an unknown 2D function. A set of controlled experiments with 60 subjects, using both surrogate models, confirm that Bayesian optimization provides a general model to represent individual patterns of active learning in humans.

Funder

Università degli Studi di Milano - Bicocca

Publisher

Springer Science and Business Media LLC

Subject

Geometry and Topology,Theoretical Computer Science,Software

Reference34 articles.

1. Archetti F, Candelieri A (2019) Bayesian optimization and data science. Springer, New York

2. Banks A, Vincent J, Anyakoha C (2007) A review of particle swarm optimization. Part I: background and development. Nat Comput 6(4):467–484

3. Bischl B, Richter J, Bossek J, Horn D, Thomas J, Lang M (2017) mlrMBO: a modular framework for model-based optimization of expensive black-box functions. arXiv preprint arXiv:1703.03373

4. Borji A, Itti L (2013) Bayesian optimization explains human active search. In: Advances in neural information processing systems, pp 55–63

5. Candelieri A, Perego R, Archetti F (2018) Bayesian optimization of pump operations in water distribution systems. J Glob Optim 71(1):213–235

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3