An Improved Cloud Detection Method for GF-4 Imagery

Author:

Lu Ming,Li Feng,Zhan Bangcheng,Li He,Yang Xue,Lu Xiaotian,Xiao Huachao

Abstract

Clouds are significant barriers to the application of optical remote sensing images. Accurate cloud detection can help to remove contaminated pixels and improve image quality. Many cloud detection methods have been developed. However, traditional methods either rely heavily on thermal infrared bands or clear-sky images. When traditional cloud detection methods are used with Gaofen 4 (GF-4) imagery, it is very difficult to separate objects with similar spectra, such as ice, snow, and bright sand, from clouds. In this paper, we propose a new method, named Real-Time-Difference (RTD), to detect clouds using a pair of images obtained by the GF-4 satellite. The RTD method has four main steps: (1) data preprocessing, including transforming digital value (DN) to Top of Atmosphere (TOA) reflectance, and orthographic and geometric correction; (2) the computation of a series of cloud indexes for a single image to highlight clouds; (3) the calculation of the difference between a pair of real-time images in order to obtain moved clouds; and (4) confirming the clouds and background by analyzing their physical and dynamic features. The RTD method was validated in three sites located in the Hainan, Liaoning, and Xinjiang areas of China. The results were compared with those of a popular classifier, Support Vector Machine (SVM). The results showed that RTD outperformed SVM; for the Hainan, Liaoning, and Xinjiang areas, respectively, the overall accuracy of RTD reached 95.9%, 94.1%, and 93.9%, and its Kappa coefficient reached 0.92, 0.88, and 0.88. In the future, we expect RTD to be developed into an important means for the rapid detection of clouds that can be used on images from geostationary orbit satellites.

Funder

National Key Research and Development Projects

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3