Abstract
With the rapid development of global positioning technologies and the pervasiveness of intelligent mobile terminals, trajectory data have shown a sharp growth trend both in terms of data volume and coverage. In recent years, increasing numbers of LBS (location based service) applications have provided us with trajectory data services such as traffic flow statistics and user behavior pattern analyses. However, the storage and query efficiency of massive trajectory data are increasingly creating a bottleneck for these applications, especially for large-scale spatiotemporal query scenarios. To solve this problem, we propose a new spatiotemporal indexing method to improve the query efficiency of massive trajectory data. First, the method extends the GeoSOT spatial partitioning scheme to the time dimension and forms a global space–time subdivision scheme. Second, a novel multilevel spatiotemporal grid index, called the GeoSOT ST-index, was constructed to organize trajectory data hierarchically. Finally, a spatiotemporal range query processing method is proposed based on the index. We implement and evaluate the index in MongoDB. By comparing the range query efficiency and scalability of our index with those of the other two space–time composite indexes, we found that our approach improves query efficiency levels by approximately 40% and has better scalability under different data volumes.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Subject
Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development
Reference38 articles.
1. Trajectory Data Mining
2. A Rush-Hour Vehicles Scheduling Strategy in Online Car-Sharing System Based on Urban Trajectory Data Analysis;Wang,2017
3. How you move reveals who you are: understanding human behavior by analyzing trajectory data
4. Trajectory Indexing and Retrieval;Deng,2011
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献