QuadGridSIM: A quadrilateral grid‐based method for high‐performance and robust trajectory similarity analysis

Author:

Liu Juqing1,Li Jun1,Qiao Linwei1,Li Mingke2,Stefanakis Emmanuel2,Zhao Xuesheng1,Huang Qian3,Wang Hao3,Zhang Chengye1

Affiliation:

1. College of Geoscience and Surveying Engineering China University of Mining and Technology‐Beijing Beijing China

2. Department of Geomatics Engineering, Schulich School of Engineering University of Calgary Calgary Canada

3. Service Lab Huawei Technology Co. Ltd Beijing China

Abstract

AbstractMeasuring trajectory similarity is a fundamental algorithm in trajectory data mining, playing a key role in trajectory clustering, pattern mining, and classification, for instance. However, existing trajectory similarity measures based on vector representation have challenges in achieving both fast and accurate similarity measurements. On one hand, most existing methods have a high computational complexity of O(n × m), resulting in low efficiency. On the other hand, many of them are sensitive to trajectory sampling rates and lack of accuracy. This article proposes QuadGridSIM, a quadrilateral grid‐based method for trajectory similarity analysis, which enables high‐performance trajectory similarity measure without the cost of low effectiveness. Specifically, we first realize the multiscale coding representation of trajectory data based on quadrilateral discrete grids. Then, a novel trajectory similarity measure is defined to reduce the computational complexity of O(n). Several effectiveness properties of QuadGridSIM are further optimized, including the spatial overlap, directionality, symmetry, and robustness to sampling rate variations. Experimental results based on real‐world and simulated taxi trajectory data indicate that QuadGridSIM outperforms most of the other tested algorithms developed previously in terms of effectiveness, particularly in its robustness regarding trajectory sampling rates. Furthermore, QuadGridSIM exhibits superior performance and is approximately one order of magnitude faster than previous methods in the literature. QuadGridSIM provides a solution to the low‐efficiency problem of massive trajectory similarity analysis and can be applied in many application scenarios, such as route recommendation and suspect detection.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3