Spatial Keyword Query of Region-Of-Interest Based on the Distributed Representation of Point-Of-Interest

Author:

Zhu ,Wu ,Chen ,Jing

Abstract

The tremendous advance in information technology has promoted the rapid development of location-based services (LBSs), which play an indispensable role in people’s daily lives. Compared with a traditional LBS based on Point-Of-Interest (POI), which is an isolated location point, an increasing number of demands have concentrated on Region-Of-Interest (ROI) exploration, i.e., geographic regions that contain many POIs and express rich environmental information. The intention behind the POI is to search the geographical regions related to the user’s requirements, which contain some spatial objects, such as POIs and have certain environmental characteristics. In order to achieve effective ROI exploration, we propose an ROI top-k keyword query method that considers the environmental information of the regions. Specifically, the Word2Vec model has been introduced to achieve the distributed representation of POIs and capture their environmental semantics, which are then leveraged to describe the environmental characteristic information of the candidate ROI. Given a keyword query, different query patterns are designed to measure the similarities between the query keyword and the candidate ROIs to find the k candidate ROIs that are most relevant to the query. In the verification step, an evaluation criterion has been developed to test the effectiveness of the distributed representations of POIs. Finally, after generating the POI vectors in high quality, we validated the performance of the proposed ROI top-k query on a large-scale real-life dataset where the experimental results demonstrated the effectiveness of our proposals.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3