Spatiotemporal Exploration of Chinese Spring Festival Population Flow Patterns and Their Determinants Based on Spatial Interaction Model

Author:

Zhou TaoORCID,Huang BoORCID,Liu XiaoqianORCID,He Guangqin,Gou QiangORCID,Huang ZhihuiORCID,Xie Cheng

Abstract

Large-scale population flow reshapes the economic landscape and is affected by unbalanced urban development. The exploration of migration patterns and their determinants is therefore crucial to reveal unbalanced urban development. However, low-resolution migration datasets and insufficient consideration of interactive differences have limited such exploration. Accordingly, based on 2019 Chinese Spring Festival travel-related big data from the AMAP platform, we used social network analysis (SNA) methods to accurately reveal population flow patterns. Then, with consideration of the spatial heterogeneity of interactive patterns, we used spatially weighted interactive models (SWIMs), which were improved by the incorporation of weightings into the global Poisson gravity model, to efficiently quantify the effect of socioeconomic factors on migration patterns. These SWIMs generated the local characteristics of the interactions and quantified results that were more regionally consistent than those generated by other spatial interaction models. The migration patterns had a spatially vertical structure, with the city development level being highly consistent with the flow intensity; for example, the first-level developments of Beijing, Shanghai, Chengdu, Guangzhou, Shenzhen, and Chongqing occupied a core position. A spatially horizontal structure was also formed, comprising 16 closely related city communities. Moreover, the quantified impact results indicated that migration pattern variation was significantly related to the population, value-added primary and secondary industry, the average wage, foreign capital, pension insurance, and certain aspects of unbalanced urban development. These findings can help policymakers to guide population migration, rationally allocate industrial infrastructure, and balance urban development.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3