Abstract
Large-scale population flow reshapes the economic landscape and is affected by unbalanced urban development. The exploration of migration patterns and their determinants is therefore crucial to reveal unbalanced urban development. However, low-resolution migration datasets and insufficient consideration of interactive differences have limited such exploration. Accordingly, based on 2019 Chinese Spring Festival travel-related big data from the AMAP platform, we used social network analysis (SNA) methods to accurately reveal population flow patterns. Then, with consideration of the spatial heterogeneity of interactive patterns, we used spatially weighted interactive models (SWIMs), which were improved by the incorporation of weightings into the global Poisson gravity model, to efficiently quantify the effect of socioeconomic factors on migration patterns. These SWIMs generated the local characteristics of the interactions and quantified results that were more regionally consistent than those generated by other spatial interaction models. The migration patterns had a spatially vertical structure, with the city development level being highly consistent with the flow intensity; for example, the first-level developments of Beijing, Shanghai, Chengdu, Guangzhou, Shenzhen, and Chongqing occupied a core position. A spatially horizontal structure was also formed, comprising 16 closely related city communities. Moreover, the quantified impact results indicated that migration pattern variation was significantly related to the population, value-added primary and secondary industry, the average wage, foreign capital, pension insurance, and certain aspects of unbalanced urban development. These findings can help policymakers to guide population migration, rationally allocate industrial infrastructure, and balance urban development.
Subject
Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献