Label Self-Advised Support Vector Machine (LSA-SVM)—Automated Classification of Foot Drop Rehabilitation Case Study

Author:

Adil Abboud SaharORCID,Al-Wais Saba,Abdullah Salma Hameedi,Alnajjar FadyORCID,Al-Jumaily AdelORCID

Abstract

Stroke represents a major health problem in our society. One of the effects of stroke is foot drop. Foot drop (FD) is a weakness that occurs in specific muscles in the ankle and foot such as the anterior tibialis, gastrocnemius, plantaris and soleus muscles. Foot flexion and extension are normally generated by lower motor neurons (LMN). The affected muscles impact the ankle and foot in both downward and upward motions. One possible solution for FD is to investigate the movement based on the bio signal (myoelectric signal) of the muscles. Bio signal control systems like electromyography (EMG) are used for rehabilitation devices that include foot drop. One of these systems is function electrical stimulation (FES). This paper proposes new methods and algorithms to develop the performance of myoelectric pattern recognition (M-PR), to improve automated rehabilitation devices, to test these methodologies in offline and real-time experimental datasets. Label classifying is a predictive data mining application with multiple applications in the world, including automatic labeling of resources such as videos, music, images and texts. We combine the label classification method with the self-advised support vector machine (SA-SVM) to create an adapted and altered label classification method, named the label self-advised support vector machine (LSA-SVM). For the experimental data, we collected data from foot drop patients using the sEMG device, in the Metro Rehabilitation Hospital in Sydney, Australia using Ethical Approval (UTS HREC NO. ETH15-0152). The experimental results for the EMG dataset and benchmark datasets exhibit its benefits. Furthermore, the experimental results on UCI datasets indicate that LSA-SVM achieves the best performance when working together with SA-SVM and SVM. This paper describes the state-of-the-art procedures for M-PR and studies all the conceivable structures.

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine

Reference23 articles.

1. Central Causes of Foot Drop: Rare and Underappreciated Differential Diagnoses

2. The Gale Encyclopedia of Neurological Disorders;Hiam,2017

3. A novel computerized tool to stratify risk in carotid atherosclerosis using kinematic features of the arterial wall;Gastounioti;IEEE J. Biomed. Health Inform.,2015

4. Statistical Learning Theory;Vapnik,1998

5. Multi-Class Support Vector Machine;Wang,2014

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3