Recognition of Continuous Music Segments Based on the Phase Space Reconstruction Method

Author:

Huang Xuesheng1ORCID,Hu YanQing2ORCID

Affiliation:

1. School of Music and Dance, Quanzhou Normal University, Quanzhou, Fujian 362000, China

2. Dean’s Office, Quanzhou Normal University, Quanzhou, Fujian 362000, China

Abstract

Piano score recognition is one of the important research contents in the field of music information retrieval, and it plays an important role in information processing. In order to reduce the influence of vocals on the progress of piano notes and restore the harmonic information corresponding to piano notes, the article models the harmonic information and vocal information corresponding to piano notes in the frequency spectrum. We use the phase space reconstruction method to extract the nonlinear feature parameters in the note audio and use some of the parameters as the training set to construct the support vector machine (SVM) classifier and the other part as the test set to test the recognition effect. Therefore, the method of adaptive signal decomposition and SVM is introduced into the signal preprocessing link, and the corresponding recognition process is established. In order to improve the performance of the support vector machine, the article uses measurement learning method to obtain the measurement learning and uses the measurement learning to replace the Euclidean distance of the Gaussian kernel function of the support vector machine. The SVM method of adaptive signal decomposition and the SVM method of principal component analysis are introduced into the preprocessing process of the note signal, and then the preprocessed signal is reconstructed in phase space, and the corresponding recognition process is established. The method of directly reconstructing the phase space of the original signal has higher accuracy and can be applied to the note recognition of continuous music segments. The final experimental results show that, compared with the current popular piano score recognition algorithm, the recognition accuracy of the proposed piano score recognition algorithm is improved by 3.5% to 12.2%.

Funder

Quanzhou Normal University

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3