An Improved Multi-Timescale AEKF–AUKF Joint Algorithm for State-of-Charge Estimation of Lithium-Ion Batteries

Author:

Wu Aihua1,Zhou Yan1,Mao Jingfeng1ORCID,Zhang Xudong1,Zheng Junqiang1

Affiliation:

1. School of Mechanical Engineering, Nantong University, Nantong 226019, China

Abstract

State-of-charge (SoC) estimation is one of the core functions of battery energy management systems. An accurate SoC estimation can guarantee the safe and reliable operation of the batteries system. In order to overcome the practical problems of low accuracy, noise uncertainty, poor robustness, and adaptability in parameter identification and SoC estimation of lithium-ion batteries, this paper proposes a joint estimation method based on the adaptive extended Kalman filter (AEKF) algorithm and the adaptive unscented Kalman filter (AUKF) algorithm in multiple time scales for 18,650 ternary lithium-ion batteries. Based on the slowly varying characteristics of lithium-ion batteries’ parameters and the quickly varying characteristics of the SoC parameter, firstly, the AEKF algorithm was used to online identify the parameters of the model of batteries with a macroscopic time scale. Secondly, the identified parameters were applied to the AUKF algorithm for SoC estimation of lithium-ion batteries with a microscopic time scale. Finally, the comparative simulation experiments were implemented, and the experimental results show the proposed joint algorithm has higher accuracy, adaptivity, robustness, and self-correction capability compared with the conventional algorithm.

Funder

Natural Science Research Program of Jiangsu Colleges and Universities

Excellent Teaching Team of the “Qinglan Project” of Jiangsu Colleges and Universities

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3