State of Charge Estimation of Lithium-Ion Battery Based on Back Propagation Neural Network and AdaBoost Algorithm

Author:

Cai Bingzi1,Li Mutian2,Yang Huawei3ORCID,Wang Chunsheng2,Chen Yougen2

Affiliation:

1. Huizhou Power Supply Bureau, Guangdong Power Grid Corporation, Huizhou 516000, China

2. School of Automation, Central South University, Changsha 410083, China

3. Department of Electrical and Computer Engineering, Florida State University, Tallahassee, FL 32304, USA

Abstract

The accurate estimation of the state of charge (SOC) of lithium-ion batteries is critical in battery energy storage systems. This paper introduces a novel approach, the AdaBoost–BPNN model, to overcome the limitations of traditional data-driven estimation methods, such as a low estimation accuracy and poor generalization ability. The proposed model employs a back propagation neural network (BPNN) for the preliminary estimation. Subsequently, an AdaBoost–BPNN model is developed as a strong learner using the AdaBoost integration algorithm. Each BPNN sub-model serves as a weak learner within the AdaBoost framework. The final output of the strong learner is obtained by combining the individual outputs from the weak learners using weighting factors. This adaptive adjustment of weighting factors enhances the accuracy of SOC estimation. The proposed SOC estimation algorithm is evaluated and validated through experimental analysis. Throughout the paper, theoretical analysis is conducted, and the proposed AdaBoost–BPNN model is validated and verified using experimental results. The results demonstrate that the AdaBoost–BPNN model outperforms traditional methods in accurately estimating SOC under various conditions, including constant current-constant voltage (CCCV) charging, dynamical stress testing (DST), US06, a federal urban driving schedule (FUDS), and pulse discharge conditions.

Funder

National Natural Science Foundation (NNSF) of China

Hunan Natural Science Foundation

China Southern Power Grid Huizhou Power Supply Bureau R&D and innovation project

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3