The Effect of Electrical Conductivity on Fruit Growth Pattern in Hydroponically Grown Tomatoes

Author:

Watabe TakafumiORCID,Nakano Yuka,Ahn Dong-Hyuk

Abstract

Osmotic stress enhances fruit quality, including the dry matter content, in tomatoes (Solanum lycopersicum L.). This study aimed at providing further insight into the precision control of fruit yield and quality on the long-term moderate osmotic stress conditions in tomato fruit production. We compared the growth pattern between fruits of two cultivars, typical Japanese and Dutch cultivars, under two different nutrient concentrations (2.3 and 5.0 dS·m−1) to understand the effect of electrical conductivity (EC) on dry mass and water content of fruits. The experiment was performed with a rockwool bag culture system in a controlled greenhouse. Increasing EC resulted in an approximately 20% decrease in fruit yield and a 0.5–1% increase in fruit dry matter content in both cultivars. This yield reduction was not caused by the fruit number, but by an approximately 25% decrease in individual fresh fruit weight. Non-linear models were used to describe the changes in dry matter content, water content, and dry weight of tomato fruit as a function of cumulative temperature. The decay rate of dry matter content in the fruit decreased with high EC treatments in the Japanese cultivar. The points at which the rates of changes in water and dry weight increased the in fruit were around 585 and 480 °C-days after anthesis, respectively, under the low EC condition. Rates of water increase in the fruit were changed by high EC treatment, while the shifts were opposite with respect to the cultivars. Dry weight increase in the fruit was not affected by EC treatment. Collectively, our findings clarify the effect of EC on the fruit growth characteristics of Japanese and Dutch tomato cultivars, and provide new insights into the yield of high-Brix tomato cultivation.

Funder

New Energy and Industrial Technology Development Organization

Publisher

MDPI AG

Subject

General Arts and Humanities

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3