Assessment of the Possibility of Using Various Types of Renewable Energy Sources Installations in Single-Family Buildings as Part of Saving Final Energy Consumption in Polish Conditions

Author:

Wróblewski PiotrORCID,Niekurzak MariuszORCID

Abstract

The aim of this work is to develop a model of heat supply to buildings with almost zero energy consumption, indicating the significant importance of heat losses and gains in heating installations. The prepared model is to indicate the need for changes in the structure and topology of heating installations, resulting from the changing heat demand of buildings. The need to create a new model is heightened by changes that relate to tightening legal regulations related to energy consumption and demand, which must meet the standards of buildings in Poland from 2021. The article presents the assumptions and results of analyses of the use of energy installations in residential buildings that use renewable energy sources to balance energy consumption in various areas of its use. To achieve this goal, calculations were made using simulations of the impact of the use of installations using renewable energy sources on the energy performance of a building with different quality of partitions and improvement of energy efficiency in accordance with the Polish standard PN-EN 12831. The test results allow to choose the most advantageous, from the point of view of economic profitability, option of replacing installations in residential buildings, and they also allow to determine the possibilities of meeting national obligations in the field of final energy reduction and increasing the share of renewable energy sources in meeting its demand in accordance with the EU obligations imposed on Poland. Thermomodernization of buildings in the temperate climate zone allows for a reduction of 38% of energy demand over the entire life cycle of a building and a reduction of CO2 emissions by 99%.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference57 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3