Experimental Study of Filtration Materials Used in the Car Air Intake

Author:

Dziubak Tadeusz,Dziubak Sebastian Dominik

Abstract

Traditional cellulose filter media used for air filtration in vehicle engines are characterized by 99.9% filtration efficiency and accuracy above 2–5 µm. The highest engine component wear is caused by dust grains above 1 µm. Filter media with nanofiber additions provide greater filtration efficiency of dust grains below 5 µm. Filter material selection for vehicle engine air filter is a problem because their manufacturers mainly provide only the structure parameters: pore size, air permeability, and thickness. There is no information about material filtration properties using polydisperse test dust. The manuscript presents methodology and experimental test results of five samples A, B, C, D and E, filter materials differing in their chemical composition and structure parameters. In the first stage, efficiency characteristics φw, filtration accuracy dzmax and the flow resistance Δpw depending on the dust absorption coefficient km of three filter cartridges of each material, A, B, C, D and E, were determined. Then, from each material characteristics of one piece was selected in order to compare their initial and initial period efficiencies as well as changes in the flow resistance depending on the dust absorption coefficient km. Obtained results showed that the filter materials differ significantly in efficiency and accuracy values in the initial filtration period. Initial period duration is also different, i.e., filtration efficiency increasing time to a certain value, which for materials with a nanofiber layer is much shorter, which minimizes engine component wear. For materials with nanofibers, flow resistance increase intensity is greater, which results from surface filtration. Filtration efficiency of each filter material sample A, B, C, D and E was assessed with the filtration quality coefficient including the efficiency and flow resistance. In the available literature, the problem of increasing filtration efficiency in the initial period is known, but there are no results for specific filter materials. Research shows that filter material characteristics are closely related. Each increase in efficiency and accuracy of intake air filtration reduces engine components wear, but it is related to flow resistance increase in the engine intake system, which reduces its power, and increases need for more frequent filter servicing.

Funder

Wojskowa Akademia Techniczna

Publisher

MDPI AG

Subject

General Materials Science

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3