Application of Ternary Nanoparticles in the Heat Transfer of an MHD Non-Newtonian Fluid Flow

Author:

Sarwar NomanORCID,Jahangir SaadORCID,Asjad Muhammad ImranORCID,Eldin Sayed M.ORCID

Abstract

This paper introduces a novel theoretical model of ternary nanoparticles for the improvement of heat transmission. Ternary nanoparticles in a heat conductor are shown in this model. Ternary nanoparticles consist of three types of nanoparticles with different physical properties, and they are suspended in a base fluid. Analytical solutions for the temperature and velocity fields are found by using the Laplace transform approach and are modeled by using a novel fractional operator. As a result, the ternary nanoparticles are identified, and an improved heat transfer feature is observed. Further experimental research on ternary nanoparticles is being carried out in anticipation of a faster rate of heat transmission. According to the graphed data, ternary nanoparticles have greater thermal conductivity than that of hybrid nanoparticles. Moreover, the fractional approach based on the Fourier law is a more reliable and efficient way of modeling the heat transfer problem than the artificial approach. The researchers were driven to create a concept of existing nanoparticles in order to boost heat transfer, since there is a strong demand in the industry for a cooling agent with improved heat transfer capabilities.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3