Flow Resistance in Open Channel Due to Vegetation at Reach Scale: A Review

Author:

D’Ippolito AntoninoORCID,Calomino Francesco,Alfonsi Giancarlo,Lauria AgostinoORCID

Abstract

Vegetation on the banks and flooding areas of watercourses significantly affects energy losses. To take the latter into account, computational models make use of resistance coefficients based on the evaluation of bed and walls roughness besides the resistance to flow offered by vegetation. This paper, after summarizing the classical approaches based on descriptions and pictures, considers the recent advancements related to the analytical methods relative both to rigid and flexible vegetation. In particular, emergent rigid vegetation is first analyzed by focusing on the methods for determining the drag coefficient, then submerged rigid vegetation is analyzed, highlighting briefly the principles on which the different models are based and recalling the comparisons made in the literature. Then, the models used in the case of both emergent and submerged rigid vegetation are highlighted. As to flexible vegetation, the paper reminds first the flow conditions that cause the vegetation to lay on the channel bed, and then the classical resistance laws that were developed for the design of irrigation canals. The most recent developments in the case of submerged and emergent flexible vegetation are then presented. Since turbulence studies should be considered as the basis of flow resistance, even though the path toward practical use is still long, the new developments in the field of 3D numerical methods are briefly reviewed, presently used to assess the characteristics of turbulence and the transport of sediments and pollutants. The use of remote sensing to map riparian vegetation and estimating biomechanical parameters is briefly analyzed. Finally, some applications are presented, aimed at highlighting, in real cases, the influence exerted by vegetation on water depth and maintenance interventions.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3