Thermal and Flow Analysis of Fully Developed Electroosmotic Flow in Parallel-Plate Micro- and Nanochannels with Surface Charge-Dependent Slip

Author:

Chang Long,Sun Yanjun,Buren Mandula,Jian YongjunORCID

Abstract

This study analytically investigates the coupled effects of surface charge and boundary slip on the fully developed electroosmotic flow and thermal transfer in parallel plate micro and nanochannels under the high zeta potential. The electric potential, velocity, temperature, flow rate, and Nusselt number are obtained analytically. The main results are that the velocity of bulk flow is significantly reduced in the presence of the surface charge-dependent slip. Moreover, the maximum velocity at ζ = −125 mV is approximately twice as large as that at ζ = −25 mV. The velocity and dimensionless temperature increase as the zeta potential increases. The dimensionless temperature of the surface charge-dependent slip flow is larger than that of the surface charge-independent slip flow. For the surface charge-dependent slip flow, the maximum temperature at ζ = −125 mV is approximately four times larger than that at ζ = −25 mV. The Nusselt number decreases with Joule heating and increases with a positive heat transfer coefficient. The Nusselt number decreases as the electric field and the magnitude of the zeta potential increase. In the surface charge-dependent slip flows, the Nusselt number is smaller than that in the surface charge-independent slip flows.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Inner Mongolia Autonomous Region of China

Research Program of Science and Technology at Universities of Inner Mongolia Automous Region

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3