The Electrical and Thermal Characteristics of Stacked GaN MISHEMT

Author:

Hui Caixin,Chen Qiuqi,Shi YijunORCID,He Zhiyuan,Huang Yun,Lu Xiangjun,Wang Hongyue,Jiang Jie,Lu Guoguang

Abstract

To study the working performance of 3D stacked chips, a double-layer stacked GaN MISHEMTs structure was designed to study the electro-thermal characteristics and heat transfer process of stacked chips. Firstly, the electrical characteristics of double-layer and single-layer GaN MISHEMTs are compared at room temperature. Under the same conditions, the output current of double-layer GaN MISHEMTs is twice that of single-layer GaN MISHEMTs, but its off-state current is much higher than that of a single-layer device. Meanwhile, there is no significant difference between the threshold voltages of the double-layer and single-layer GaN MISHEMTs. Then, the effect of temperature on the electrical characteristics of double-layer GaN MISHEMTs is also investigated. When the temperature increased from room temperature to 150 °C, the device’s threshold voltage gradually shifted negatively, the output current of the device decreased, and the off-state current of the device increased. Furthermore, a thermal resistance network model has been established to analyze the thermal characteristics of the stacked GaN MISHEMTs. The relative error between the results calculated according to the model and the experimental results does not exceed 4.26%, which verified the correctness and accuracy of the presented model to predict the temperature distribution of the stacked GaN MISHEMTs.

Funder

National Natural Science Foundation of China

Key-Area Research and Development Program of Guangdong Province

Natural Science Foundation of Guangdong Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3