Abstract
Motivated by emerging high-temperature manufacturing processes deploying nano-polymeric coatings, the present study investigates nonlinear thermally radiative Oldroyd-B viscoelastic nanoliquid stagnant-point flow from a heated vertical stretching permeable surface. Robin (mixed derivative) conditions were utilized in order to better represent coating fabrication conditions. The nanoliquid analysis was based on Buongiorno’s two-component model, which features Brownian movement and thermophoretic attributes. Nonlinear buoyancy force and thermal radiation formulations are included. Chemical reactions (constructive and destructive) were also considered since coating synthesis often features reactive transport phenomena. An ordinary differential equation model was derived from the primitive partial differential boundary value problem using a similarity approach. The analytical solutions were achieved by employing a homotopy analysis scheme. The influence of the emerging dimensionless quantities on the transport characteristics was comprehensively explained using appropriate data. The obtained analytical outcomes were compared with the literature and good correlation was achieved. The computations show that the velocity profile was diminished with an increasing relaxation parameter, whereas it was enhanced when the retardation parameter was increased. A larger thermophoresis parameter induces an increase in temperature and concentration. The heat and mass transfer rates at the wall were increased with incremental increases in the temperature ratio and first order chemical reaction parameters, whereas contrary effects were observed for larger thermophoresis, fluid relaxation and Brownian motion parameters. The simulations can be applied to the stagnated nano-polymeric coating of micromachines, robotic components and sensors.
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献