Scrutinization of Solar Thermal Energy On Heat and Mass Transfer Within a Micropolar Flow Over a Stretching Surface, Featuring Bioconvective Heat Generation and Chemical Reaction

Author:

Adegbite P.,Avikal Shwetank,Bajaj Mohit,Ajala O. A.,Obalalu A. M,Abdul-Yekeen A. M.

Abstract

Enhancing heat and mass transfer efficiency is crucial for reducing energy consumption and mitigating environmental impact in various industries, including power generation, electronics cooling, and chemical processing. This study explores the impact of solar radiation, bioconvection, micropolar fluid properties, and nanoparticle and chemical reactions on a stretching surface. The research uses mathematical modeling and analysis to solve the 2-dimentional laminar bioconvection boundary layer flow of micropolar based nanofluids. The study concludes that bioconvection significantly enhances heat transfer and fluid flow characteristics, with heat generation and chemical reactions playing a crucial role. The thermophysical properties of the fluid, bioconvection parameters, and chemical reaction rates also have a significant impact on flow and heat transfer characteristics. The analysis reveals that increased heat generation leads to increased temperature, while chemical reactions decrease concentration flow. Unsteadiness parameters also impact velocity, energy, concentration, and microorganism. The findings can provide valuable insights for researchers and engineers in designing and optimizing heat transfer systems involving micropolar nanofluids with bioconvection, heat generation, and chemical reactions.

Publisher

EDP Sciences

Reference34 articles.

1. Choi S.U., Eastman J.A., Enhancing Thermal Conductivity of Fluids with Nanoparticles (No. ANL/MSD/CP-84938; CONF-951135-29), (Argonne National Lab., IL, United States, 1995)

2. Voigt W., Theoretische Studien uber die Elasticitatsverhaltnisse der Krystalle, Abhandlungen der Koniglichen Gesellschaft der Wissenschaften in Gottingen, (1887)

3. Cosserat E., Cosserat F., theorie des corps deformables, Hermann, Paris, (1909) https://doi.org/10.1038/081067a0)

4. Mathematical analysis of bio-convective micropolar nanofluid

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3