A Genome-Wide View of Transcriptional Responses during Aphis glycines Infestation in Soybean

Author:

Yao Luming,Yang Biyun,Ma Xiaohong,Wang Shuangshuang,Guan Zhe,Wang Biao,Jiang YinaORCID

Abstract

Soybean aphid (Aphis glycines Matsumura) is one of the major limiting factors in soybean production. The mechanism of aphid resistance in soybean remains enigmatic as little information is available about the different mechanisms of antibiosis and antixenosis. Here, we used genome-wide gene expression profiling of aphid susceptible, antibiotic, and antixenotic genotypes to investigate the underlying aphid–plant interaction mechanisms. The high expression correlation between infested and non-infested genotypes indicated that the response to aphid was controlled by a small subset of genes. Plant response to aphid infestation was faster in antibiotic genotype and the interaction in antixenotic genotype was moderation. The expression patterns of transcription factor genes in susceptible and antixenotic genotypes clustered together and were distant from those of antibiotic genotypes. Among them APETALA 2/ethylene response factors (AP2/ERF), v-myb avian myeloblastosis viral oncogene homolog (MYB), and the transcription factor contained conserved WRKYGQK domain (WRKY) were proposed to play dominant roles. The jasmonic acid-responsive pathway was dominant in aphid–soybean interaction, and salicylic acid pathway played an important role in antibiotic genotype. Callose deposition was more rapid and efficient in antibiotic genotype, while reactive oxygen species were not involved in the response to aphid attack in resistant genotypes. Our study helps to uncover important genes associated with aphid-attack response in soybean genotypes expressing antibiosis and antixenosis.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3