A Mathematical Model of Biomass Combustion Physical and Chemical Processes

Author:

Popescu Florin,Mahu Razvan,Ion Ion V.,Rusu EugenORCID

Abstract

The numerical simulation of biomass combustion requires a model that must contain, on one hand, sub-models for biomass conversion to primary products, which involves calculations for heat transfer, biomass decomposition rate, product fractions, chemical composition, and material properties, and on the other hand, sub-models for volatile products transport inside and outside of the biomass particle, their combustion, and the char reduction/oxidation. Creating such a complete mathematical model is particularly challenging; therefore, the present study proposes a versatile alternative—an originally formulated generalized 3D biomass decomposition model designed to be efficiently integrated with existing CFD technology. The biomass decomposition model provides the chemical composition and mixture fractions of volatile products and char at the cell level, while the heat transfer, species transport, and chemical reaction calculations are to be handled by the CFD software. The combustion model has two separate units: the static modeling that produces a macro function returning source/sink terms and local material properties, and the dynamic modeling that tightly couples the first unit output with the CFD environment independently of the initial biomass composition, using main component fractions as initial data. This article introduces the generalized 3D biomass decomposition model formulation and some aspects related to the CFD framework implementation, while the numerical modeling and testing shall be presented in a second article.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3