Simulation of the Steam Gasification of Japanese Waste Wood in an Indirectly Heated Downdraft Reactor Using PRO/II™: Numerical Comparison of Stoichiometric and Kinetic Models

Author:

Talero GabrielORCID,Kansha YasukiORCID

Abstract

The conversion of biomass to olefin by employing gasification has recently gained the attention of the petrochemical sector, and syngas composition is a keystone during the evaluation of process design. Process simulation software is a preferred evaluation tool that employs stoichiometric and kinetic approaches. Despite the available literature, the estimation errors of these simulation methods have scarcely been contrasted. This study compares the errors of stoichiometric and kinetic models by simulating a downdraft steam gasifier in PRO/II. The quantitative examination identifies the model that best predicts the composition of products for the gasification of Japanese wood waste. The simulation adopts reaction mechanisms, flowsheet topology, reactions parameters, and component properties reported in the literature. The results of previous studies are used to validate the models in a comparison of the syngas composition and yield of products. The models are used to reproduce gasification at temperatures of 600∼900 °C and steam-to-biomass mass ratios of 0∼4. Both models reproduce experimental results more accurately for changes in the steam-to-biomass mass ratio than for temperature variations. The kinetic model is more accurate for predicting composition and yields, having global errors of 3.91%-mol/mol and 8.16%-g/gBM, respectively, whereas the simple stoichiometric model has an error of 7.96%-mol/mol and 16.21%-g/gBM.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference51 articles.

1. The production of fuels and chemicals in the new world: critical analysis of the choice between crude oil and biomass vis-à-vis sustainability and the environment

2. Life cycle environmental impact assessment of biomass materials in Japan

3. Circular Economy Potential and Public-Private Partnership Models in Japan;Hongo,2016

4. Global Energy Review: CO2 Emissions in 2021 Global Emissions Rebound Sharply to Highest Ever Level,2022

5. Catalytic Conversion of Coal and Biomass Volatiles: A Review

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3