Emission and Neutralization of Methane from a Municipal Landfill-Parametric Analysis

Author:

Ciuła Józef,Kozik Violetta,Generowicz AgnieszkaORCID,Gaska KrzysztofORCID,Bak AndrzejORCID,Paździor Marlena,Barbusiński KrzysztofORCID

Abstract

An attempt was made to estimate the annual production of CH4 at a municipal waste landfill site in Poland. As a matter of fact, the extent of the unorganized emission of CH4 from the landfill surface was approached based on the adopted mathematical model. The Ward agglomeration method for cluster analysis and the Pearson coefficient were employed to evaluate the distance-based similarity measure and to optimize methods for estimating methane emissions from a landfill as well as to verify the input parameters for the model. In order to calculate the content of biodegradable organic parts in the waste, morphological tests of the landfilled waste were performed. Physical quantities, measurements and the actual amount of the landfilled waste as well as the volume of CH4 neutralized in a collective flare were implemented in the model, respectively. The model-based findings and experimental outcome demonstrated stable gas production in the landfill with a high CH4 content. On the other hand, a rather low efficiency of the landfill passive degassing installation indicated the necessity to design and develop its active counterpart with the prospective application of the generated biogas for energy production in a cogeneration system.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference63 articles.

1. The Sustainable Development Goals Reporthttps://unstats.un.org/sdgs/report/2019/The-Sustainable-Development-Goals-Report-2019.pdf

2. Waste management models and their application to sustainable waste management

3. Direct production of lactic acid based on simultaneous saccharification and fermentation of mixed restaurant food waste

4. Kinetics of dairy wastewater treatment in the SBR system;Wojnicz;Arch. Environ. Prot.,2010

5. Biowaste Treatment and Waste-To-Energy—Environmental Benefits

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3