Abstract
This paper presents a recent rainfall-induced landslide in China that occurred on August 21, 2020 and resulted in nine deaths. The sliding material traveled a distance of 800 m, with an altitude difference of about 180 m. A field investigation, remote sensing based on an unmanned aerial vehicle (UAV), in situ monitoring, and a rainfall data analysis were carried out to reveal the deposit characteristics, causative factors, post-landslide behavior, and the mechanism of the landslide. A saltatory micro-relief of the original slope determined the multiple-stage failure type of the slide, and also promoted the entrainment effect during the landslide movement. After the first-initiation sliding stage, the motion of this landslide involved typical progressive movement, and over time, the style of the runout generally turned into a flow-like form. Furthermore, the antecedent cumulative rainfall of 149.5 mm directly contributed to the occurrence of the landslide. Using the GB-SAR early warning system, the post-landslide residual failure was successfully predicted 10 min in advance. The combination of the UAV and GB-SAR technique can surely be beneficial for other inaccessible landslide investigations as well and improves the emergency rescue security.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Youth Fund Project of NSFC
Subject
General Earth and Planetary Sciences
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献