An Efficient and Accurate Ground-Based Synthetic Aperture Radar (GB-SAR) Real-Time Imaging Scheme Based on Parallel Processing Mode and Architecture

Author:

Tan Yunxin123,Li Guangju23,Zhang Chun2,Gan Weiming2

Affiliation:

1. School of Systems Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China

2. Hainan Acoustics Laboratory, Institute of Acoustics, Chinese Academy of Sciences, Haikou 570105, China

3. Key Laboratory of Ocean Observation Technology, Ministry of Natural Resources, Tianjin 300112, China

Abstract

When performing high-resolution imaging with ground-based synthetic aperture radar (GB-SAR) systems, the data collected and processed are vast and complex, imposing higher demands on the real-time performance and processing efficiency of the imaging system. Yet a very limited number of studies have been conducted on the real-time processing method of GB-SAR monitoring data. This paper proposes a real-time imaging scheme based on parallel processing models, optimizing each step of the traditional ωK imaging algorithm in parallel. Several parallel optimization schemes are proposed for the computationally intensive and complex interpolation part, including dynamic parallelism, the Group-Nstream processing model, and the Fthread-Group-Nstream processing model. The Fthread-Group-Nstream processing model utilizes Fthread, Group, and Nstream for the finer-grained processing of monitoring data, reducing the impact of the nested depth on the algorithm’s performance in dynamic parallelism and alleviating the issue of serial execution within the Group-Nstream processing model. This scheme has been successfully applied in a synthetic aperture radar imaging system, achieving excellent imaging results and accuracy. The speedup ratio can reach 52.14, and the relative errors in amplitude and phase are close to 0, validating the effectiveness and practicality of the proposed schemes. This paper addresses the lack of research on the real-time processing of GB-SAR monitoring data, providing a reliable monitoring method for GB-SAR deformation monitoring.

Funder

Hainan Provincial Natural Science Foundation of China

the Open Fund Project of Key Laboratory of Ocean Observation Technology, Ministry of Natural Resource

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3