Abstract
Modelling of combined Global Navigation Satellite System (GNSS) and Interferometric Synthetic Aperture Radar (InSAR) data was performed to characterize the source of the Mw6.9 earthquake that occurred to the north of Samos Island (Aegean Sea) on 30 October 2020. Pre-seismic analysis revealed an NNE–SSW extensional regime with normal faults along an E–W direction. Co-seismic analysis showed opening of the epicentral region with horizontal and vertical displacements of ~350 mm and ~90 mm, respectively. Line-of-sight (LOS) interferometric vectors were geodetically corrected using the GNSS data and decomposed into E–W and vertical displacement components. Compiled interferometric maps reveal that relatively large ground displacements had occurred in the western part of Samos but had attenuated towards the eastern and southern parts. Alternating motions occurred along and across the main geotectonic units of the island. The best-fit fault model has a two-segment listric fault plane (average slip 1.76 m) of normal type that lies adjacent to the northern coastline of Samos. This fault plane is 35 km long, extends to 15 km depth, and dips to the north at 60° and 40° angles for the upper and lower parts, respectively. A predominant dip-slip component and a substantial lateral one were modelled.
Subject
General Earth and Planetary Sciences
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献